
Tivoli Netcool Support's
Guide to

the JDBC Gateway
by

Jim Hutchinson
Document release: 3.2



Supports Guide to the JDBC Gateway

Table of Contents
1Introduction...................................................................................................................................3

1.1Overview......................................................................................................................................3

2Database Considerations............................................................................................................4

2.1Example Database drivers and URLs.........................................................................................4
2.1.1DB2...........................................................................................................................................4
2.1.2Oracle.......................................................................................................................................4
2.1.3Sybase......................................................................................................................................4
2.2Database Schemas.....................................................................................................................4

3JDBC Gateway Configuration.....................................................................................................5

3.1G_JDBC.props.............................................................................................................................6
3.2jdbc.map......................................................................................................................................7
3.3jdbc.rdrwtr.tblrep.def....................................................................................................................8
3.4jdbc.startup.cmd..........................................................................................................................9
3.5Gate.Jdbc.Mode .......................................................................................................................10
3.5.1AUDIT Mode...........................................................................................................................11
3.5.2REPORTING Mode................................................................................................................12

4Monitoring Performance............................................................................................................13

5Property Considerations............................................................................................................14

5.1Gate.RdrWtr.Description...........................................................................................................14
5.2Java Memory.............................................................................................................................14
5.3Object Server Ipc.StackSize......................................................................................................15
5.4Object Server failover and failback............................................................................................15
5.5Java CLASSPATH : Gate.Java.ClassPath................................................................................15
5.6Data Forwarding........................................................................................................................16
5.6.1The jdbc.rdrwtr.tblrep.def file..................................................................................................16
5.6.2Journal considerations............................................................................................................16
5.7Debug logging...........................................................................................................................17
5.8Dumpprops................................................................................................................................17

6Example Installations.................................................................................................................18

6.1Linux Red Hat : REPORTING...................................................................................................18
6.1.1Configuration..........................................................................................................................18
6.1.2Properties file..........................................................................................................................19
6.1.3Map file...................................................................................................................................20
6.1.4Table replication file................................................................................................................23
6.1.5Start-up file.............................................................................................................................23
6.2Solaris : AUDIT..........................................................................................................................24
6.2.1Configuration..........................................................................................................................24
6.2.2Properties file..........................................................................................................................25
6.2.3Map file...................................................................................................................................26
6.2.4Table replication file................................................................................................................27

7Event Data Flow..........................................................................................................................28

7.1Audit Database Configuration....................................................................................................28
7.2Resident Database Configuration.............................................................................................28
7.2.1Standard Triggers Method......................................................................................................29
7.2.2Temporal Trigger Method.......................................................................................................30

8Static Table Updates..................................................................................................................31

8.1DB2 Update Script Example......................................................................................................32
8.2Command line access...............................................................................................................33

9Common Issues..........................................................................................................................34

IBM Copyright 2019 1



Supports Guide to the JDBC Gateway
9.1Status updates are not happening............................................................................................34
9.2Replicating Custom tables.........................................................................................................35
9.3Recommended SQLSTATE settings ........................................................................................36
9.4Oracle RAC URL example.........................................................................................................37
9.5Encrypting passwords and other properties..............................................................................38
9.6Creating an Object Server Gateway User.................................................................................38
9.7Setting the Gateways Java path................................................................................................39
9.8DB2 tracing batches..................................................................................................................40

IBM Copyright 2019 2



Supports Guide to the JDBC Gateway

1 Introduction

1.1 Overview

The JDBC Gateway reads data from the Object Server and inserts this data into the target database using the 
specified JDBC driver.  The JDBC drivers are provided by the Database provider, and issues with them should be 
reported to this vendor rather IBM Tivoli Netcool support.

IBM Copyright 2019 3

ObjectServer Database

AFTER IDUC DO

REPLICATE ALL

JDBC Gateway cache files

JDBC Gateway

Object Server Database

alerts.status

alerts.journal

JDBC Gateway

The cache files
are processed
serially from
start-up



Supports Guide to the JDBC Gateway

2 Database Considerations

2.1 Example Database drivers and URLs

Note that the chosen Jar files are based on the version of Java being used by the JDBC gateway.

2.1.1 DB2
JDBC Driver name : com.ibm.db2.jcc.DB2Driver

JDBC Driver jars : db2jcc.jar

JDBC URL : jdbc:db2//<FQDN-hostname>:50000/<database>

2.1.2 Oracle
JDBC Driver name : oracle.jdbc.driver.OracleDriver

JDBC Driver jars : classes12.jar | ojdbc14.jar

JDBC URL : jdbc:oracle:thin:@ //<FQDN-hostname>:1521: <database>

2.1.3 Sybase
JDBC Driver name : net.sourceforge.jtds.jdbc.Driver

JDBC Driver jars : jtds.jar

JDBC URL : jdbc:jtds:sybase://<FQDN-hostname>:5000; DatabaseName=<database>

2.2 Database Schemas
The JDBC database schemas are provided as separate packages and not included with the JDBC gateway 
configuration files. Always download the latest schema when applying the JDBC Gateway, and check the schema 
for your database against the current SQL files provided in the package.

Two schema types are provided:
• REPORTING
• AUDIT

Ensure that the correct mapping used for your chosen JDBC Gateway mode, and use the example files provided to 
create a set of JDBC Gateway files suitable for your installation.

Whilst the REPORTING schema includes a full set of tables suitable for the Netcool/Reporter reporting tool, and the
Netcool/OMNIbus TCR reports, the reporter_status and reporter_journal tables are the most useful, and can be 
applied alone, without the other tables, with custom reports 

If a custom reporting tool is to be used, consider the fields required in the alerts.status that will need to be added to 
allow the various states of the alarms to be captured, and reported on.
e.g.
AcknowledgedTime
AcknoweldgedBy
TicketOpenedTime
TicketClosedTime
ClearedTime
ClearedBy
MaximumSeverity
EscalationTime

IBM Copyright 2019 4



Supports Guide to the JDBC Gateway

3 JDBC Gateway Configuration
It is best practice to create a gateway specific directory in $NCHOME/omnibus/gates that contains all of the files 
used by the gateway so that all the files are easy to locate and backup.

The key files and directories are;

 G_JDBC.props

 jdbc.map

 jdbc.rdrwtr.tblrep.def

 jdbc.startup.cmd

IBM Copyright 2019 5



Supports Guide to the JDBC Gateway

3.1 G_JDBC.props
You can use the ‘-dumpprops’ command to determine all of the available properties, that will include the JDBC 
gateway specific property settings as well as the library properties.

An example for a REPORTING Oracle 11g historical database is given  below;

Name: 'G_JDBC'

Gate.RdrWtr.Description: 'Oracle JDBC gateway'

Gate.Jdbc.Mode: 'REPORTING' 

# Tables to replicate to

Gate.Jdbc.StatusTableName: 'REPORTER_STATUS' 

Gate.Jdbc.JournalTableName: 'REPORTER_JOURNAL' 

Gate.Jdbc.DetailsTableName: 'REPORTER_DETAILS' 

# JDBC target server

Gate.Jdbc.Url: 'jdbc:oracle:thin:@server.uk.ibm.com:1521:ORACLE11G'

Gate.Jdbc.Driver: 'oracle.jdbc.driver.OracleDriver'

Gate.Jdbc.Username: 'reporter'

Gate.Jdbc.Password: 'reporter'

# Connection settings

Gate.RdrWtr.Server: 'AGG_V'

Gate.RdrWtr.Username: 'root'

Gate.RdrWtr.Password: ''

Gate.Jdbc.ReconnectTimeout: 30

Gate.Jdbc.InitializationString: ''

# Configuration files

Gate.StartupCmdFile: '$NCHOME/omnibus/gates/G_JDBC/jdbc.startup.cmd'

Gate.MapFile: '$NCHOME/omnibus/gates/G_JDBC/jdbc.map'

Gate.RdrWtr.TblReplicateDefFile: '$NCHOME/omnibus/gates/G_JDBC/jdbc.rdrwtr.tblrep.def'

MessageLog: '$NCHOME/omnibus/log/G_JDBC.log'

MaxLogFileSize: 102400

# Synchronisation

Gate.Jdbc.ResyncMode: 'UNI'

Gate.Jdbc.ResyncFilter: 'LastOccurrence > (getdate - 3600)'

# Other settings - default

Gate.RdrWtr.FailbackEnabled: FALSE

Gate.RdrWtr.FailbackTimeout: 30

Gate.Transfer.FailoverSyncRate: 60

Gate.G_JDBC.FailbackEnabled: FALSE

Gate.G_JDBC.FailbackTimeout: 30

# Debugging – Comment out for Production usage

MessageLevel: 'info'

Gate.G_JDBC.Debug: TRUE

Gate.Java.Debug: TRUE

Gate.Mapper.Debug: TRUE

Gate.NGtkDebug: TRUE

Gate.RdrWtr.Debug: TRUE

Gate.RdrWtr.LogOSSql: TRUE

#EOF

IBM Copyright 2019 6



Supports Guide to the JDBC Gateway

3.2 jdbc.map
There are two map file examples provided for the two modes of operation the JDBC gateways supports;

• audit.jdbc.map

• reporting.jdbc.map

The mapping file is referred to by the table replication file, start-up TRANSFER commands, and ad hoc command 
line [nco_sql] TRANSFER commands.

The mapping file conforms to the object server mapping file syntax, and needs to be maintained when new fields 
are added to the object server and are required to be transferred or replicated to the historical database.

Modifications to the mapping file may be required for your historical database. For instance Sybase is case 
sensitive, and typically users prefer to use the same column syntax as the object server. The default mapping file 
uses capital letters, rather than the mixed case column names seen in the object server. Therefore the mapping file 
would need to be edited to meet the requirements of the target database fields.

IBM Copyright 2019 7



Supports Guide to the JDBC Gateway

3.3 jdbc.rdrwtr.tblrep.def

The table replication definition file is of the same format as the object server gateways’ table replication file.

e.g.

REPLICATE ALL FROM TABLE 'alerts.status'

        USING MAP 'StatusMap';

REPLICATE ALL FROM TABLE 'alerts.journal'

        USING MAP 'JournalMap';

Allowed settings;

REPLICATE {ALL | INSERTS, UPDATES, DELETES} 

FROM TABLE sourcetable 

USING MAP mapname 

[FILTER WITH filter_clause] 

[INTO destinationtable ] 

[ ORDER BY column_name ] 

[WITH NORESYNC][RESYNC DELETES FILTER condition] 

[SET UPDTOINS CHECK TO {ENABLED|DISABLED|FORCED}]

[AFTER IDUC DO command] 

[ CACHE FILTER condition]

The use of a FILTER and AFTER IDUC DO commands, are used to reduce the volume of events being forwarded. 
Other options may be used depending upon the requirements of your historical database and the type of events 
being forwarded.

IBM Copyright 2019 8



Supports Guide to the JDBC Gateway

3.4 jdbc.startup.cmd
The start-up commands main usage is to allow static object server tables to be transferred to the historical database
when the JDBC gateway is started.

The default is to transfer no tables, however, a few transfer examples are given which are used in the 
Netcool/Reporter and TDW integration;

#TRANSFER FROM 'alerts.conversions' TO 'REPORTER_CONVERSIONS' DELETE USING TRANSFER_MAP ConversionsMap;
#TRANSFER FROM 'alerts.objclass' TO 'REPORTER_CLASSES' DELETE USING TRANSFER_MAP ObjectClassesMap;
#TRANSFER FROM 'master.groups' TO 'REPORTER_GROUPS' DELETE USING TRANSFER_MAP GroupsMap;
#TRANSFER FROM 'master.members' TO 'REPORTER_MEMBERS' DELETE USING TRANSFER_MAP MembersMap;
#TRANSFER FROM 'master.names' TO 'REPORTER_NAMES' DELETE USING TRANSFER_MAP NamesMap;

#EOF

By default the mappings are provided for the default static tables. There may be some updates required depending 
upon the target database, due to database restrictions. Custom static tables can also be transferred upon start-up 
or via the nco_sql command line.

The  alerts.objclass table is a legacy Object Server table, and is no longer populated by default; Class definitions 
can be obtained from the alerts.conversions table.

To create a custom classes table create a new table as a copy of REPORTER_COVERSIONS and use the 'VIA 
FILTER' clause to TRANSFER only Classes.

For example, in Oracle:

-- Create table to store Groups for Netcool Conversions
DROP TABLE custom_classes CASCADE CONSTRAINTS;

CREATE TABLE custom_classes (
        Conversion_Key  VARCHAR2(255)   NOT NULL,
        Colname         VARCHAR2(255)   NOT NULL,
        Value           NUMBER(16)      NOT NULL,
        Conversion      VARCHAR2(255)   NOT NULL,
        PRIMARY KEY(Conversion_Key)
)
/

Add a custom mapping to jdbc.map:
CREATE MAPPING CustomConversionsMap
(
    'CONVERSION_KEY'    = '@KeyField',
    'COLNAME'           = '@Colname',
    'VALUE'             = '@Value',
    'CONVERSION'        = '@Conversion'
);

Then use the TRANSFER statement with VIA FILTER:
TRANSFER FROM 'alerts.conversions' TO 'CUSTOM_CLASSES' VIA FILTER 'Colname = \'Class\'' DELETE USING 
TRANSFER_MAP CustomConversionsMap;

Notice that the new database table has the same field name as the Object Server when it is used in the filter.

IBM Copyright 2019 9



Supports Guide to the JDBC Gateway

3.5 Gate.Jdbc.Mode 

The JDBC Gateway property file has a setting named Gate.Jdbc.Mode which controls the way in which the gateway
sends events to the target database. This property takes the value of 'REPORTING' or 'AUDIT' and a set of 
supporting files are provided to assist in the configuration of the JDBC Gateway. Each mode requires a specific 
database configuration and a separate downloadable package is provided to assist in the target schema's 
configuration.

AUDIT Mode Overview 
The AUDIT mode uses two functions unique to the AUDIT mode to populate the database. The STATUS rows are 
unique based on the ActionCode, ActionTime, ServerName and ServerSerial fields.

ACTION_CODE : Auto-generated single character used to represent Insert, Update and Delete
ACTION_TIME : Auto-generated UNIX Timestamp used to hold the object server timestamp when the action 
occurred

REPORTING Mode Overview 
The REPORTING mode mimics the way rows are updated in the object server, to populate the database. The 
REPORTER_STATUS rows are unique based on ServerName and ServerSerial fields.

IBM Copyright 2019 10

I

U

D

ACTION_CODE

'U',timestamp#4,etc.

'D',timestamp#5,etc.

'U',timestamp#3,etc.

'U',timestamp#2,etc.

'I',timestamp#1,etc.

With AUDIT mode the Insert, Update and Delete actions in the object server create a unique row 
in the database provided that these are sent once within the object servers IDUC period

Action

I

U

D

ServerName, ServerSerial, etc.



Supports Guide to the JDBC Gateway

3.5.1 AUDIT Mode

The differences between the AUDIT mode and REPORTING mode are seen in the JDBC Gateways property and 
mapping file, as these need to reflect the AUDIT mode database schema. The AUDIT mode attempts to capture 
every Insert, Update, Delete seen in the object server based on the object servers IDUC period and JDBC 
gateways table replication.

The main table is 'status', with each row there being uniquely defined by the fields ActionCode, ActionTime, 
ServerName and ServerSerial. This allows the history of a specific event, defined by the  ServerName and 
ServerSerial, to be stored and reported on. Within the object server, the Identifier,  ServerName and ServerSerial 
defines an event, with  Identifier being capable of transcending one or more unique ServerName and ServerSerial 
pair.

Rows a defined uniquely in time using the ActionTime field, and are not updated after creation due to the tables 
constraints.

File : audit.G_JDBC.props

Gate.Jdbc.Mode: 'AUDIT'

Gate.Jdbc.StatusTableName: 'status'
Gate.Jdbc.JournalTableName: 'journal'
Gate.Jdbc.DetailsTableName: 'details'

File : audit.jdbc.map

CREATE MAPPING StatusMap
(
    'ACTIONCODE'        = ACTION_CODE,
    'ACTIONTIME'        = ACTION_TIME CONVERT TO DATE,
…
# NB do not concatenate additional values for ServerName and ServerSerial !
    'SERVERNAME'                = '@ServerName'         ON INSERT ONLY,
    'SERVERSERIAL'              = '@ServerSerial'       ON INSERT ONLY
);

AUDIT Database schema highlights

DROP TABLE __STATUS__ CASCADE CONSTRAINTS;
CREATE TABLE __STATUS__
(
        ActionTime              DATE NOT NULL,
        ActionCode              CHAR(1) NOT NULL,
…
        ServerName              VARCHAR2(64) NULL,
        ServerSerial            NUMBER(16) NULL
)

CREATE UNIQUE INDEX __STATUS___idx ON __STATUS__
  (ActionTime,ActionCode,ServerSerial,ServerName);

IBM Copyright 2019 11



Supports Guide to the JDBC Gateway

3.5.2 REPORTING Mode

The REPORTING mode allows events to stored in a database as single rows per  ServerName and ServerSerial. 
Fields can be updated after the row is initially created, and are used to capture the full life-cycle of the event.

For example the OriginalSeverity is capture using the mapping:

'ORIGINALSEVERITY'  = '@Severity'           ON INSERT ONLY,

and the events deletion is captured using the DeletedAt database field, which is populated automatically by the 
JDBC Gateway when the event is deleted in the object server.

File : reporting.G_JDBC.props

Gate.Jdbc.Mode: 'REPORTING'

Gate.Jdbc.StatusTableName: 'REPORTER_STATUS' 
Gate.Jdbc.JournalTableName: 'REPORTER_JOURNAL' 
Gate.Jdbc.DetailsTableName: 'REPORTER_DETAILS' 

File : reporting.jdbc.map
CREATE MAPPING StatusMap
(
    'IDENTIFIER'        = '@Identifier'         ON INSERT ONLY,
    'SERIAL'            = '@Serial'             ON INSERT ONLY,
…
# NB do not concatenate additional values for ServerName and ServerSerial !
    'SERVERNAME'                = '@ServerName'         ON INSERT ONLY,
    'SERVERSERIAL'              = '@ServerSerial'       ON INSERT ONLY
);

REPORTING Database schema highlights

CREATE TABLE reporter_status
(
       Identifier        VARCHAR2(255)  NULL,
       Serial            NUMBER(16)     NULL,
…
       ServerName        VARCHAR2(64)   NOT NULL,
       ServerSerial      NUMBER(16)     NOT NULL,
       PRIMARY KEY (ServerName, ServerSerial)
)

IBM Copyright 2019 12



Supports Guide to the JDBC Gateway

4 Monitoring Performance
The JDBC gateway logs performance information which is enabled when the messagelevel is set to informational. 
The main documentation describes how these statistics are calculated and how they are used.

However, this data is not intuitive. It is recommended that if performance issues are seen that a set number of 
events are inserted into a test system, and the statistics are reviewed there, with the actual loading being taken as a
measure of the systems performance.

Here are two statistics entries for 50,000 event being updated:
Information: I-GJA-000-000: [ngjava]: G_JDBC: Thread-2: STATS: f60c894f-eb73-4855-a72c-85eb2d82f014
Batch write time 36147 ms (1383.627963593106 rows/second)
Information: I-GJA-000-000: [ngjava]: G_JDBC: pool-1-thread-1: STATS: f60c894f-eb73-4855-a72c-85eb2d82f014 
Batch execution time: 37651 ms (1328.3578125414995 rows/second)

The Batch write time refers to the time to create the cache file.
The Batch execution time refers to the time taken to send the data to the database.
The approximate number of events can be determined and checked by these values:
e.g.
36147 ms *  1383 ~ 50k
37651 ms *  1328 ~ 50k

In this example the batch size was the default 250 [Gate.Jdbc.MaxBatchSize] and there were no errors seen in the 
log file so there were no delays in the events being written to the database. Therefore for this system it takes 
around 60 seconds [36147 + 37651 ms] to perform the task of writing the cache file, and sending the updates to the 
database, if the writes are done in sequence. In the gateways log file on one pool thread [pool-1-thread-1] was 
visible for writing to the database. Performance for writing could be improved for writing using the 
Gate.Jdbc.Connections property, which is set to 3 by default. The Oracle gateway, for example, used 7 writer 
Connections by default, so increasing Gate.Jdbc.Connections to 10 is reasonable.

Note that although the  Gate.Jdbc.MaxBatchSize is 250, only one cache file is written. The batching is performed 
within the cache files and will affect how the gateway sends data to the database. If there is a build of cache files 
over time, it means that there are problems writing to the database, or that the gateway is unable to find enough 
time to process the batch files, due to loading at the object server.

Example 10,000 INSERTED events

Information: I-GJA-000-000: [ngjava]: G_JDBC: Thread-2: STATS: 1bd5a159-1b69-4f3a-896e-a175b970be30 
Batch write time 6465 ms (1546.6357308584686 rows/second)
Information: I-GJA-000-000: [ngjava]: G_JDBC: pool-1-thread-1: STATS: 1bd5a159-1b69-4f3a-896e-a175b970be30 
Batch execution time: 5096 ms (1962.12715855573 rows/second)

Example 10,000 UPDATED events

Information: I-GJA-000-000: [ngjava]: G_JDBC: Thread-2: STATS: 7f4df28a-cf07-4f2f-a720-15e834fb32f3
Batch write time 4633 ms (2158.428663932657 rows/second)
Information: I-GJA-000-000: [ngjava]: G_JDBC: pool-1-thread-1: STATS: 7f4df28a-cf07-4f2f-a720-15e834fb32f3 
Batch execution time: 7064 ms (1415.6285390713476 rows/second)

In the two examples it is apparent that the time to perform the two tasks was comparable.

It was noted that the logging happened within the IDUC cycle [flush], that the events were processed in a single 
cache file, and that all the events were processed. Events were only pushed to the database where the mapping 
files requirements were met; For the updates both the gateway flag and LastOccurrence were updated.

IBM Copyright 2019 13



Supports Guide to the JDBC Gateway

5 Property Considerations

5.1 Gate.RdrWtr.Description

It is important to set the gateway description and if necessary use a distinct user to login to the object server so that 
the JDBC gateway can be identified using the ‘users’ or connection details. This allows the gateway to be monitored
and managed accurately using custom triggers.

e.g.
Gate.RdrWtr.Server: 'AGG_V'
Gate.RdrWtr.Description: 'jdbc_db2_gateway'
Gate.RdrWtr.Username: 'jdbcgw'
Gate.RdrWtr.Password: 'netcool'

5.2 Java Memory
The Java memory is allocated and/or limited using the JDBC gateways property file as follows;

Gate.Java.Arguments: '-Xmx2048m'

When the log file reports:

Error: [ngjava]: Failed to create a row entry for mapped table row data object instance 
within embedded JVM. (12:Not enough space)

The amount of memory available to the java process needs to be increased or the volume of alarms the JDBC gateway 
uses reduced. Java 6 automatically allocates memory based on what memory is available. Therefore with Java 6 or 
above environments, the '-Xmx' option is used to limit the amount of memory the non-native java process uses.
It is recommended that a minimum of 1Gb of RAM is allocated to Java for production JDBC gateways, but no more 
than 1.5Gb, if the Java is a 32-bit Java.
To see how much memory can be allocated use the –version command;
e.g.
java -Xmx1500m –version

32-Bit Java General guidance:
For a 32-bit java process no more than twice the maximum allowed memory should be allocated to the non-native 
process, as the native process will require what is left of the memory to operate.

For example:
AIX: 1500 mb
Solaris: 1500 mb
Linux x86: 1500 mb
HPUX: 700 mb
zLinux: 700 mb
Windows: 500 mb

IBM Copyright 2019 14



Supports Guide to the JDBC Gateway

5.3 Object Server Ipc.StackSize
For large volumes of inserts|updates the object server needs to have the Ipc.StackSize increased.

e.g.

vi $NCHOME/etc/NCOMS.props
#Ipc.StackSize: 67584
# Increased for large data inserts - 4*standard
Ipc.StackSize: 524288
:wq

The default stack size is between 65k to 128k depending upon the version of Netcool/OMNIbus. Increasing the stack size 
limits the number of connections that can be established to the Object Server, since each connection requires its own 
stack. 

i.e. stacksize * number of clients connected = memory used

Maximum memory sizes for Object Server range from 2Gb to 3.5 Gb for 32-bit processes.
Otherwise, for 64-bit processes, the maximum memory allocated will be related to usage and what is available on the 
platform.

The current memory size of the Object Server needs to be measured and taken into account, before increasing the stack 
size property. The Ipc.StackSize in the gateway and object server should be set to the same value.

5.4 Object Server failover and failback

The JDBC Gateway uses the default behaviour of the Aggregation layer object server pair to failover and failback, and 
should connect to the Aggregation layers virtual object server, with an IPC timeout of at least 300 seconds.

Gate.RdrWtr.Server: 'AGG_V'
Gate.RdrWtr.Username: 'jdbcgw'
Gate.RdrWtr.Password: 'netcool'
Ipc.Timeout: 600

5.5 Java CLASSPATH : Gate.Java.ClassPath

The JDBC Gateway uses the $NCHOME/omnibus/gates/java directory to create its CLASSPATH by default. 
Therefore, usually all that is required is for the required Database jar files be added to the gates java directory.

However, when multiple versions of the Database jar files are required; for example when there are multiple 
instances of the JDBC Gateway connecting to multiple Database versions, the Gate.Java.ClassPath needs to be 
set specifically. In such cases a gateway specific jars directory can be used to hold the Database specific jar files 
and the Gate.Java.ClassPath set accordingly.

e.g.

Gate.Java.ClassPath: 
'/opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java/ngtktk.jar:/opt/nrv81/IBM/tivoli/ne
tcool/omnibus/gates/java/ngjava.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java/
nco_g_jdbc.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java/db2jcc_license_cu.jar
:/opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java/db2jcc4.jar' 

IBM Copyright 2019 15



Supports Guide to the JDBC Gateway

5.6 Data Forwarding

The key property settings for forwarding data are;
Gate.RdrWtr.IducFlushRate: 11
Gate.Jdbc.MaxBatchSize: 250
Gate.Jdbc.Connections: 10
Gate.RdrWtr.UseBulkInsCmd: FALSE

The IducFlushRate should not be lower than 10 seconds unless the system is specifically designed to manage 
aggressive data forwarding.

The MaxBatchSize should be sized according to the typical load, or to manage event floods, otherwise the default 
setting should suffice.

The default setting of Gate.Jdbc.Connections is below what previous historical gateways used. The setting can be 
increased to 10, for example, to be comparable with the Oracle gateway it would be set to 7. The JDBC gateway 
processes the replicated tables in sequence, after first performing the start-up command files TRANSFER 
commands. This means that all the connections are used for the current table being replicated, and other tables are
not replicated until the current transactions are completed. This can cause problems when large volumes of data 
are being replicated from one table, giving the impression that the gateway has stalled, when another table is 
checked in the database. Referring back to the STATS messages in the log file will indicate that the JDBC gateway 
is still successfully processing.

Using Gate.RdrWtr.UseBulkInsCmd set to TRUE can improve performance, but may cause problems if there are 
differences in languages and character sets between the Object Server and database.

5.6.1 The jdbc.rdrwtr.tblrep.def file

The jdbc.rdrwtr.tblrep.def file controls how events are forwarded to the historical database. Typically the file will use 
the default settings.

Event forwarding can be more precisely controlled using a FILTER and the ‘AFTER IDUC DO’ command statement;
e.g.

REPLICATE ALL FROM TABLE 'alerts.status'
USING MAP 'StatusMap'
FILTER WITH 'HistoricalReporting>=1'
AFTER IDUC DO 'HistoricalReporting=2';

REPLICATE ALL FROM TABLE 'alerts.journal'
USING MAP 'JournalMap';
# EOF

5.6.2 Journal considerations

The forwarding of journals can be controlled further using the following properties;
Gate.Mapper.ForwardHistoricJournals: TRUE
Gate.RdrWtr.IgnoreStatusFilter: TRUE

Set IgnoreStatusFilter to TRUE if all journals need to be forwarded to the historical database.

IBM Copyright 2019 16



Supports Guide to the JDBC Gateway

5.7 Debug logging
The main property is ‘MessageLevel’ however, the full set of logging can be enabled using;

MessageLevel: 'debug'
Gate.G_JDBC.Debug: TRUE
Gate.Java.Debug: TRUE
Gate.Mapper.Debug: TRUE
Gate.NGtkDebug: TRUE
Gate.RdrWtr.Debug: TRUE
Gate.RdrWtr.LogOSSql: TRUE

As well as logging SQL stubs for further analysis of exactly what data is being forwarded:
Gate.RdrWtr.LogOSSql: TRUE

5.8 Dumpprops

Use the -dumpprops option to see the default property settings, and how the custom property file settings are 
translated.

For example, the default classpath setting:

nco_g_jdbc -dumpprops

…

Gate.Java.ClassPath: 
'/opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java/ngjava.jar:/opt/nrv81/IBM/tivoli/ne
tcool/omnibus/gates/java/ngtktk.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java/
nco_g_jdbc.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java/db2jcc_license_cu.jar
:/opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java/db2jcc.jar:/opt/nrv81/IBM/tivoli/ne
tcool/omnibus/gates/java/db2jcc4.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/java/jars/
hsqldb.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/java/jars/icu4j-
51_2.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/java/jars/icu4j-charset-
51_2.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/java/jars/jms.jar:/opt/nrv81/IBM/tivol
i/netcool/omnibus/java/jars/log4j-
1.2.8.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/java/jars/ControlTower.jar:/opt/nrv81
/IBM/tivoli/netcool/omnibus/java/jars/baroctool.jar:/opt/nrv81/IBM/tivoli/netcool/omn
ibus/java/jars/confpack.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/java/jars/icw.jar:/
opt/nrv81/IBM/tivoli/netcool/omnibus/java/jars/VersionFinder.jar:/opt/nrv81/IBM/tivol
i/netcool/omnibus/java/jars/jconn3.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/java/jar
s/niduc.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/java/jars/utility.jar:/opt/nrv81/IB
M/tivoli/netcool/omnibus/java/jars/OSReport.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus
/java/jars/repository.jar:/opt/nrv81/IBM/tivoli/netcool/omnibus/java/jars/org.eclipse
.swt.gtk.solaris.sparc_3.7.1.v3738a.jar'

Which uses $NCHOME/omnibus/gates/java and $NCHOME/omnibus/java/jars.

IBM Copyright 2019 17



Supports Guide to the JDBC Gateway

6 Example Installations

6.1 Linux Red Hat : REPORTING
Platform : Linux Red Hat 7
Database :  Oracle 11g

Environment : Netcool/OMNIbus v8.1

6.1.1 Configuration

The REPORTING mode of the JDBC gateway allows key data to be stored in a historical database. New columns can be 
added to the object server and historical tables to allow event states to be stored for reporting. 

For example;

 FirstAcknowledged
 MaximumSeverity
 EscalationTime

Because each event is held within a single row, it is important that events are captured before they are deleted from
the object server. It is recommended that a filter is used, alongside an ‘AFTER IDUC DO’ statement, so as to allow 
the delete triggers the capacity to delete only events that have been processed.

The other important benefit of using the REPORTING mode is that only the last state of an event needs to be stored
in the object server, before it is deleted. This means that any issues with event processing or the JDBC gateway will
have less impact on the final reports.

The recommended filter is to use a custom column as flag and set this columns value after the event is forwarded to
the historical database;

e.g.
FILTER WITH 'HistoricalReporting>=1'

AFTER IDUC DO 'HistoricalReporting=2'

It is best to forward all journals and purge them as required form the historical database, so as to reduce the risk of 
journal loss, provided that journals are important in the reporting process. Otherwise only forward alerts.status and 
add custom columns to store key event life parameters, such as which user deleted the event, when the event was 
acknowledged, etc.

In this example the delete triggers would check that the HistoricalReporting column was either ‘0’ or ‘2’.

IBM Copyright 2019 18



Supports Guide to the JDBC Gateway

6.1.2 Properties file
Name: 'G_JDBC'

# Reporting mode properties

Gate.Jdbc.Mode: 'REPORTING'

# Table properties

Gate.Jdbc.StatusTableName: 'REPORTER_STATUS' 

Gate.Jdbc.JournalTableName: 'REPORTER_JOURNAL' 

Gate.Jdbc.DetailsTableName: 'REPORTER_DETAILS' 

# JDBC Connection properties

# Setting CLASSPATH as multiple Oracle jars are installed – otherwise it's not required

Gate.Java.ClassPath: 
'/opt/nrv731/tivoli/netcool/omnibus/gates/G_JDBC/java/classes12.jar:/opt/nrv731/tivoli/netcool/omnibus/gates/G_J
DBC/java/ojdbc14.jar:/opt/nrv731/tivoli/netcool/omnibus/gates/java/ngtktk.jar:/opt/nrv731/tivoli/netcool/omnibus
/gates/java/ngjava.jar:/opt/nrv731/tivoli/netcool/omnibus/gates/java/nco_g_jdbc.jar'

Gate.Jdbc.Url: 'jdbc:oracle:thin:@server.uk.ibm.com:1521:ORACLE11G'

Gate.Jdbc.Driver: 'oracle.jdbc.driver.OracleDriver'

Gate.Jdbc.Username: 'REPORTS'

Gate.Jdbc.Password: 'netcool'

Gate.Jdbc.ReconnectTimeout: 30

Gate.Jdbc.InitializationString: ''

# ObjectServer Connection properties

Gate.RdrWtr.Server: 'JDBC_COMS'

Gate.RdrWtr.Username: 'jdbcgw'

Gate.RdrWtr.Password: 'netcool'

Gate.UsePamAuth: TRUE

# Files

Gate.StartupCmdFile: '$NCHOME/omnibus/gates/G_JDBC/reporting.jdbc.startup.cmd'

Gate.MapFile: '$NCHOME/omnibus/gates/G_JDBC/reporting.jdbc.map'

Gate.RdrWtr.TblReplicateDefFile: '$NCHOME/omnibus/gates/G_JDBC/reporting.jdbc.rdrwtr.tblrep.def'

# Resynchronisation

Gate.Jdbc.ResyncMode: 'UNI'

Gate.Jdbc.ResyncFilter: 'LastOccurrence > (getdate - 36000)'

# Logging

MessageLog: '$NCHOME/omnibus/log/G_JDBC.log'

MaxLogFileSize: 102400

MessageLevel: 'warn'

# Failover/Failback

Gate.RdrWtr.Description: 'JDBC_ORACLE_gateway'

Gate.RdrWtr.FailbackEnabled: FALSE

Gate.RdrWtr.FailbackTimeout: 30

Gate.Transfer.FailoverSyncRate: 60

Gate.G_JDBC.FailbackEnabled: FALSE

Gate.G_JDBC.FailbackTimeout: 30

# Other settings

Gate.Reader.IgnoreStatusFilter : TRUE

#EOF

IBM Copyright 2019 19



Supports Guide to the JDBC Gateway

6.1.3 Map file

CREATE MAPPING StatusMap

(

    'IDENTIFIER'        = '@Identifier'         ON INSERT ONLY,

    'SERIAL'            = '@Serial'             ON INSERT ONLY,

    'NODE'              = '@Node'               ON INSERT ONLY,

    'NODEALIAS'         = '@NodeAlias'          ON INSERT ONLY NOTNULL '@Node',

    'MANAGER'           = '@Manager'            ON INSERT ONLY,

    'AGENT'             = '@Agent'              ON INSERT ONLY,

    'ALERTGROUP'        = '@AlertGroup'         ON INSERT ONLY,

    'ALERTKEY'          = '@AlertKey'           ON INSERT ONLY,

    'SEVERITY'          = '@Severity',

    'SUMMARY'           = '@Summary',

    'STATECHANGE'       = '@StateChange'        CONVERT TO DATE,

    'FIRSTOCCURRENCE'   = '@FirstOccurrence'    ON INSERT ONLY CONVERT TO DATE,

    'LASTOCCURRENCE'    = '@LastOccurrence'     CONVERT TO DATE,

    'LASTMODIFIED'      = '@StateChange'        CONVERT TO DATE,

    'POLL'              = '@Poll'               ON INSERT ONLY,

    'TYPE'              = '@Type'               ON INSERT ONLY,

    'TALLY'             = '@Tally',

    'CLASS'             = '@Class'              ON INSERT ONLY,

    'GRADE'             = '@Grade'              ON INSERT ONLY,

    'LOCATION'          = '@Location'           ON INSERT ONLY,

    'OWNERUID'          = '@OwnerUID',

    'OWNERGID'          = '@OwnerGID',

    'ACKNOWLEDGED'      = '@Acknowledged',

    'FLASH'             = '@Flash'              ON INSERT ONLY,

    'EVENTID'           = '@EventId'            ON INSERT ONLY,

    'EXPIRETIME'        = '@ExpireTime'         ON INSERT ONLY,

    'PROCESSREQ'        = '@ProcessReq',

    'SUPPRESSESCL'      = '@SuppressEscl',

    'CUSTOMER'          = '@Customer'           ON INSERT ONLY,

    'SERVICE'           = '@Service'            ON INSERT ONLY,

    'PHYSICALSLOT'      = '@PhysicalSlot'       ON INSERT ONLY,

    'PHYSICALPORT'      = '@PhysicalPort'       ON INSERT ONLY,

    'PHYSICALCARD'      = '@PhysicalCard'       ON INSERT ONLY,

    'TASKLIST'          = '@TaskList',

    'NMOSSERIAL'        = '@NmosSerial'         ON INSERT ONLY,

    'NMOSOBJINST'       = '@NmosObjInst'        ON INSERT ONLY,

    'NMOSCAUSETYPE'     = '@NmosCauseType',

    'LOCALNODEALIAS'    = '@LocalNodeAlias'     ON INSERT ONLY,

    'LOCALPRIOBJ'       = '@LocalPriObj'        ON INSERT ONLY,

    'LOCALSECOBJ'       = '@LocalSecObj'        ON INSERT ONLY,

    'LOCALROOTOBJ'      = '@LocalRootObj'       ON INSERT ONLY,

    'REMOTENODEALIAS'   = '@RemoteNodeAlias'    ON INSERT ONLY,

    'REMOTEPRIOBJ'      = '@RemotePriObj'       ON INSERT ONLY,

    'REMOTESECOBJ'      = '@RemoteSecObj'       ON INSERT ONLY,

    'REMOTEROOTOBJ'     = '@RemoteRootObj'      ON INSERT ONLY,

    'X733EVENTTYPE'     = '@X733EventType'      ON INSERT ONLY,

    'X733PROBABLECAUSE' = '@X733ProbableCause',

    'X733SPECIFICPROB'  = '@X733SpecificProb'   ON INSERT ONLY,

    'X733CORRNOTIF'     = '@X733CorrNotif'      ON INSERT ONLY,

    'ORIGINALSEVERITY'  = '@Severity'           ON INSERT ONLY,

# NB do not concatenate additional values for ServerName and ServerSerial !

    'SERVERNAME'                = '@ServerName'         ON INSERT ONLY,

    'SERVERSERIAL'              = '@ServerSerial'       ON INSERT ONLY

);

IBM Copyright 2019 20



Supports Guide to the JDBC Gateway
CREATE MAPPING JournalMap

(

    'SERIAL'            = '@Serial',

    'USERID'            = '@UID',

    'CHRONO'            = '@Chrono' CONVERT TO DATE,

    'TEXT1'             = '@Text1',

    'TEXT2'             = '@Text2',

    'TEXT3'             = '@Text3',

    'TEXT4'             = '@Text4',

    'TEXT5'             = '@Text5',

    'TEXT6'             = '@Text6',

    'TEXT7'             = '@Text7',

    'TEXT8'             = '@Text8',

    'TEXT9'             = '@Text9',

    'TEXT10'            = '@Text10',

    'TEXT11'            = '@Text11',

    'TEXT12'            = '@Text12',

    'TEXT13'            = '@Text13',

    'TEXT14'            = '@Text14',

    'TEXT15'            = '@Text15',

    'TEXT16'            = '@Text16',

# NB do not concatenate additional values for ServerName and ServerSerial !

    'SERVERNAME'        = STATUS.SERVER_NAME,

    'SERVERSERIAL'      = STATUS.SERVER_SERIAL

);

CREATE MAPPING DetailsMap

(

    'IDENTIFIER'        = '@Identifier',

    'ATTRVAL'           = '@AttrVal',

    'SEQUENCE'          = '@Sequence',

    'NAME'              = '@Name',

    'DETAIL'            = '@Detail',

# NB do not concatenate additional values for ServerName and ServerSerial !

    'SERVERNAME'        = STATUS.SERVER_NAME,

    'SERVERSERIAL'      = STATUS.SERVER_SERIAL

);

IBM Copyright 2019 21



Supports Guide to the JDBC Gateway

# The following maps can be used when the gateway is run in REPORTER mode

# and the example TRANSFER commands in the default nco_g_oracle.startup.cmd

# are required - and uncommented.

CREATE MAPPING NamesMap

(

    'NAME'                 = '@Name',

    'OWNERUID'             = '@UID',

    'OWNERGID'             = '@GID',

    'PASSWORD'             = '@Passwd',

    'TYPE'                 = '@Type'

);

CREATE MAPPING GroupsMap

(

    'NAME'                = '@Name',

    'OWNERGID'            = '@GID'

);

CREATE MAPPING MembersMap

(

#    'OWNERKEY'            = TO_STRING('@UID') + TO_STRING('@GID'),

    'OWNERUID'            = '@UID',

    'OWNERGID'            = '@GID'

);

CREATE MAPPING ConversionsMap

(

    'CONVERSION_KEY'    = '@KeyField',

    'COLUMN_NAME'       = '@Colname',

    'VALUE'             = '@Value',

    'CONVERSION'        = '@Conversion'

);

CREATE MAPPING ObjectClassesMap

(

    'CLASS'             = '@Tag',

    'NAME'              = '@Name',

    'ICON'              = '@Icon',

    'MENU'              = '@Menu'

);

IBM Copyright 2019 22



Supports Guide to the JDBC Gateway

6.1.4 Table replication file

REPLICATE ALL FROM TABLE 'alerts.status'

USING MAP 'StatusMap'

FILTER WITH 'HistoricalReporting>=1'

AFTER IDUC DO 'HistoricalReporting=2';

REPLICATE ALL FROM TABLE 'alerts.journal'

USING MAP 'JournalMap';

#EOF

6.1.5 Start-up file

TRANSFER FROM 'alerts.conversions' TO 'REPORTER_CONVERSIONS' DELETE USING TRANSFER_MAP ConversionsMap;

TRANSFER FROM 'master.groups' TO 'REPORTER_GROUPS' DELETE USING TRANSFER_MAP GroupsMap;

TRANSFER FROM 'master.members' TO 'REPORTER_MEMBERS' DELETE USING TRANSFER_MAP MembersMap;

TRANSFER FROM 'master.names' TO 'REPORTER_NAMES' DELETE USING TRANSFER_MAP NamesMap;

#EOF

IBM Copyright 2019 23



Supports Guide to the JDBC Gateway

6.2 Solaris : AUDIT

Platform : Solaris 10

Database :  Sybase 15

Environment : Netcool/OMNIbus v7.3.1

6.2.1 Configuration

With the AUDIT mode a new row is created in the historical database whenever  Inserts, Updates and Deletes happen in 
the object server. In general all events need to be forwarded in this mode, so filtering and event reduction is not 
performed at the gateway. Instead the historical database prunes the data periodically, so as to reduce the data to a 
manageable amount, or else the data is archived.

IBM Copyright 2019 24



Supports Guide to the JDBC Gateway

6.2.2 Properties file

# Java

# Setting CLASSPATH as multiple versions of Sybase Jars are installed

Gate.Java.ClassPath: '/opt/nrv731/omnibus/tivoli/netcool/omnibus/gates/G_JSYB/java/jtds.jar:/opt 
/nrv731/omnibus/tivoli/netcool/omnibus/gates/java/ngtktk.jar:/opt 
/nrv731/omnibus/tivoli/netcool/omnibus/gates/java/ngjava.jar:/opt 
/nrv731/omnibus/tivoli/netcool/omnibus/gates/java/nco_g_jdbc.jar'

# Limiting Java memory usage

Gate.Java.Arguments: '-Xmx1024m'

# Object Server & gateway

Name: 'G_JSYB'

Gate.RdrWtr.Server: 'JDBC_COMS'

Gate.RdrWtr.Username: 'jdbcgw'

Gate.RdrWtr.Password: 'netcool'

Gate.StartupCmdFile: '/opt /nrv731/omnibus/tivoli/netcool/omnibus/gates/G_JSYB/audit.jdbc.startup.cmd'

Gate.RdrWtr.TblReplicateDefFile: '/opt 
/nrv731/omnibus/tivoli/netcool/omnibus/gates/G_JSYB/audit.jdbc.rdrwtr.tblrep.def'

Gate.MapFile: '/opt/ nrv731/omnibus/tivoli/netcool/omnibus/gates/G_JSYB/audit.jdbc.map'

MessageLog: '/opt/ nrv731/omnibus/tivoli/netcool/omnibus/log/G_JSYB15.log'

Ipc.SSLCertificate: '/opt/ nrv731/omnibus/tivoli/netcool/omnibus/gates/G_JSYB/audit.JDBC.crt'

Ipc.SingleThreaded: FALSE

Gate.RdrWtr.UseBulkInsCmd: FALSE

Gate.RdrWtr.IducFlushRate: 11

Gate.Mapper.ForwardHistoricJournals: TRUE

Gate.Mapper.ForwardHistoricDetails: FALSE

Gate.RdrWtr.IgnoreStatusFilter: TRUE

# JDBC

Gate.Jdbc.Url: 'jdbc:jtds:sybase://server.uk.ibm.com:5000;DatabaseName=audit_gw'

Gate.Jdbc.Driver: 'net.sourceforge.jtds.jdbc.Driver'

Gate.Jdbc.Username: 'jdbc_audit'

Gate.Jdbc.Password: 'jdbc_audit'

Gate.Jdbc.Connections: 7

Gate.Jdbc.MaxBatchSize: 100

Gate.Jdbc.Mode: 'AUDIT'

Gate.Jdbc.ActionCodeField: 'ActionCode'

Gate.Jdbc.ActionTimeField: 'ActionTime'

Gate.Jdbc.ResyncMode: 'BI'

Gate.Jdbc.DeletedAtField: 'DeletedAt'

Gate.Jdbc.ServerNameField: 'ServerName'

Gate.Jdbc.ServerSerialField: 'ServerSerial'

Gate.Jdbc.StatusTableName: 'jdbc_audit_status'

Gate.Jdbc.JournalTableName: 'jdbc_audit_journal'

Gate.Jdbc.DetailsTableName: 'jdbc_audit_details'

# Failover/Failback

Gate.RdrWtr.Description: 'Sybase JDBC gateway'

Gate.RdrWtr.FailbackEnabled: FALSE

Gate.RdrWtr.FailbackTimeout: 30

Gate.Transfer.FailoverSyncRate: 60

Gate.G_JDBC.FailbackEnabled: FALSE

Gate.G_JDBC.FailbackTimeout: 30

# Logging

MessageLevel: 'warn'

# EOF

IBM Copyright 2019 25



Supports Guide to the JDBC Gateway

6.2.3 Map file
CREATE MAPPING StatusMap

(

    'ActionCode'        = ACTION_CODE,

    'ActionTime'        = ACTION_TIME CONVERT TO DATE,

    'Identifier'        = '@Identifier'         ON INSERT ONLY,

    'Serial'            = '@Serial'             ON INSERT ONLY,

    'Node'              = '@Node'               ON INSERT ONLY,

    'NodeAlias'         = '@NodeAlias'          ON INSERT ONLY NOTNULL '@Node',

    'Manager'           = '@Manager'            ON INSERT ONLY,

    'Agent'             = '@Agent'              ON INSERT ONLY,

    'AlertGroup'        = '@AlertGroup'         ON INSERT ONLY,

    'AlertKey'          = '@AlertKey'           ON INSERT ONLY,

    'Severity'          = '@Severity',

    'Summary'           = '@Summary',

    'StateChange'       = '@StateChange'        CONVERT TO DATE,

    'FirstOccurrence'   = '@FirstOccurrence'    ON INSERT ONLY CONVERT TO DATE,

    'LastOccurrence'    = '@LastOccurrence'     CONVERT TO DATE,

    'Poll'              = '@Poll'               ON INSERT ONLY,

    'Type'              = '@Type'               ON INSERT ONLY,

    'Tally'             = '@Tally',

    'Class'             = '@Class'              ON INSERT ONLY,

    'Grade'             = '@Grade'              ON INSERT ONLY,

    'Location'          = '@Location'           ON INSERT ONLY,

    'OwnerUID'          = '@OwnerUID',

    'OwnerGID'          = '@OwnerGID',

    'Acknowledged'      = '@Acknowledged',

    'Flash'             = '@Flash'              ON INSERT ONLY,

    'EventId'           = '@EventId'            ON INSERT ONLY,

    'ExpireTime'        = '@ExpireTime'         ON INSERT ONLY,

# NB do not concatenate additional values for ServerName and ServerSerial !

    'ServerName'                = '@ServerName'         ON INSERT ONLY,

    'ServerSerial'              = '@ServerSerial'       ON INSERT ONLY

);

IBM Copyright 2019 26



Supports Guide to the JDBC Gateway

CREATE MAPPING JournalMap

(

    'Serial'            = '@Serial',

    'UID'               = '@UID',

    'Chrono'            = '@Chrono' CONVERT TO DATE,

    'Text1'             = '@Text1',

    'Text2'             = '@Text2',

    'Text3'             = '@Text3',

    'Text4'             = '@Text4',

    'Text5'             = '@Text5',

    'Text6'             = '@Text6',

    'Text7'             = '@Text7',

    'Text8'             = '@Text8',

    'Text9'             = '@Text9',

    'Text10'            = '@Text10',

    'Text11'            = '@Text11',

    'Text12'            = '@Text12',

    'Text13'            = '@Text13',

    'Text14'            = '@Text14',

    'Text15'            = '@Text15',

    'Text16'            = '@Text16',

# NB do not concatenate additional values for ServerName and ServerSerial !

    'ServerName'        = STATUS.SERVER_NAME,

    'ServerSerial'      = STATUS.SERVER_SERIAL

);

CREATE MAPPING DetailsMap

(

    'Identifier'        = '@Identifier',

    'AttrVal'           = '@AttrVal',

    'Sequence'          = '@Sequence',

    'Name'              = '@Name',

    'Detail'            = '@Detail',

# NB do not concatenate additional values for ServerName and ServerSerial !

    'ServerName'        = STATUS.SERVER_NAME,

    'ServerSerial'      = STATUS.SERVER_SERIAL

);

6.2.4 Table replication file

REPLICATE ALL FROM TABLE 'alerts.status'

        USING MAP 'StatusMap' ;

REPLICATE ALL FROM TABLE 'alerts.journal'

        USING MAP 'JournalMap';

#EOF

IBM Copyright 2019 27



Supports Guide to the JDBC Gateway

7 Event Data Flow
The design of the Target Database is dependent upon how the historical data is to be used. 

7.1 Audit Database Configuration

Some customers require all data to be archived for a period of time, before being deleted. In such cases a DBA will 
control the main Archive Database with the Active Database being controlled locally. Periodically all the data in the 
Active Database is archived to the Archive Database and purged from the Active Database. This archive process 
can be performed using a number of techniques, and is outside the scope of this document.

7.2 Resident Database Configuration

More commonly the data is required to be resident, with the data being used to produce weekly, monthly or annual 
reports. In these cases, there is a need to ensure that the data is pruned before entering the Database. The best 
method to do this is through the use of a filter, update flag and object server triggers. 

IBM Copyright 2019 28

ObjectServer
Database

AFTER IDUC DO

FiLTER WITH



Supports Guide to the JDBC Gateway
7.2.1 Standard Triggers Method

Use a flag such as ReportGWFlag to control the flow of data in the following triggers;
 new_row
 deduplication
 delete_clears

In each trigger set the ReportGWFlag to ‘1’ as required to allow the required events to be processed by the JDBC 
gateway.  The JDBC gateway properties file needs to refer to the flag in the FILTER and AFTER-IDUC table 
replication statement;

e.g.
FILTER WITH 'ReportGWFlag>0'

AFTER IDUC DO 'ReportGWFlag=2'

Control over which events are forwarded can be applied to the events Class, Manager and LastOccurrence. The 
setting of the ReportGWFlag can also be controlled within probe rules files.

The ReportGWFlag is added to the Aggregation Object Servers using nco_config or via the nco_sql command line:

alter table alerts.status add ReportGWFlag int;

and the AGG_GATE.map file updated for StatusMap:

        'ReportGWFlag' =        '@ReportGWFlag',

IBM Copyright 2019 29

mailto:'@ReportGWFlag


Supports Guide to the JDBC Gateway

7.2.2 Temporal Trigger Method
The temporal trigger method allows the events to be checked periodically, to determine if they are persistent and 
important enough to be archived to the historical database. 

In this case the trigger only actions events with the ReportGWFlag flag set to ‘1’, based on whether the event can be 
archived and the JDBC gateway table replication statement defined as;

FILTER WITH 'ReportGWFlag>1'

AFTER IDUC DO 'ReportGWFlag=3'

This allows for a trigger to set the ReportGWFlag flag to ‘2’, after the object server trigger has determined which events 
are for archiving.

The following trigger then forwards events to the Oracle database based on the age of the event and Severity;

create or replace trigger nc_jdbc_gateway_forward

group nc_jdbc_gateway

enabled true

priority 1

comment 'Set ReportGWFlag to forward events that meet specific requirements - OLD  High Severity events'

every 31 seconds

begin

        update alerts.status set ReportGWFlag = 2, where ReportGWFlag = 1 and Severity > 1 and FirstOccurrence 
<= (getdate - 600);

end;

IBM Copyright 2019 30



Supports Guide to the JDBC Gateway

8 Static Table Updates
The JDBC gateway can be used to copy static tables to the database, using the TRANSFER command.
This command can be run from the nco_sql command line or in the jdbc.startup.cmd to push static data to the 
historical database, for use with reporting tools.

The JDBC gateways’ TRANSFER command has the same syntax as other gateways.

The syntax of the TRANSFER command is:
TRANSFER 'tablename' FROM readername TO writername 
[ AS 'tableformat' ]
{ DELETE | DELETE condition | DO NOT DELETE }
[ USE TRANSFER_MAP ] [ USING FILTER filter_clause ];

The JDBC gateway includes the mapping definitions and the commented out TRANSFER commands in the  
jdbc.startup.cmd file:

e.g.
TRANSFER FROM 'alerts.conversions' TO 'REPORTER_CONVERSIONS' DELETE USING TRANSFER_MAP ConversionsMap;
TRANSFER FROM 'master.groups' TO 'REPORTER_GROUPS' DELETE USING TRANSFER_MAP GroupsMap;
TRANSFER FROM 'master.members' TO 'REPORTER_MEMBERS' DELETE USING TRANSFER_MAP MembersMap;
TRANSFER FROM 'master.names' TO 'REPORTER_NAMES' DELETE USING TRANSFER_MAP NamesMap;

However, not all databases support this command format.

IBM Copyright 2019 31



Supports Guide to the JDBC Gateway

8.1 DB2 Update Script Example
It may be required to run the TRANSFER commands periodically to ensure that the data is up to date. If this is 
required, create a shell-script, test that it works and then add the script to UNIX cron.

e.g.
vi $OMNIHOME/gates/G_DB2/tranfer_static_tables_to_db2.sh
#! /bin/sh
# Delete tables ready for TRANSFER
NCHOME=/opt/nrv73
OMNIHOME=$NCHOME/omnibus
LANG=C
LC_ALL=C
export NCHOME OMNIHOME LANG LC_ALL
#
DB2DATABASE=TCRMODEL
DB2USER=db2v95
DB2PASSWORD=netcool
export DB2DATABASE DB2USER DB2PASSWORD

echo "Purging static tables"
db2 CONNECT TO $DB2DATABASE USER $DB2USER USING $DB2PASSWORD
db2 -td@ << EOF
DELETE from REPORTER_CONVERSIONS @
DELETE from REPORTER_CLASSES @
DELETE from REPORTER_GROUPS @
DELETE from REPORTER_MEMBERS @
DELETE from REPORTER_NAMES @
COMMIT WORK @
exit
EOF
# TRANSFER tables from object server
GWHOST=localhost
GWUSER=root
GWPASSWORD=netcool
export GWHOST GWUSER GWPASSWORD

echo "Attempting to transfer static tables"
$OMNIHOME/bin/nco_g_icmd -hostname $GWHOST -username $GWUSER -password '' << EOF
TRANSFER FROM 'alerts.conversions' TO 'REPORTER_CONVERSIONS' USING TRANSFER_MAP ConversionsMap;
go
TRANSFER FROM 'alerts.objclass' TO 'REPORTER_CLASSES' USING TRANSFER_MAP ObjectClassesMap;
go
TRANSFER FROM 'master.groups' TO 'REPORTER_GROUPS' USING TRANSFER_MAP GroupsMap;
go
TRANSFER FROM 'master.members' TO 'REPORTER_MEMBERS' USING TRANSFER_MAP MembersMap;
go
TRANSFER FROM 'master.names' TO 'REPORTER_NAMES' USING TRANSFER_MAP NamesMap;
go
quit
EOF
echo " Transfer to DB2 script completed"
# Check tables
echo "Checking static tables"
db2 -td@ << EOF
CONNECT TO $DB2DATABASE USER $DB2USER USING $DB2PASSWORD @
select count(*)from REPORTER_CONVERSIONS @
select count(*)from REPORTER_CLASSES @
select count(*)from REPORTER_GROUPS @
select count(*)from REPORTER_MEMBERS @
select count(*)from REPORTER_NAMES @
exit
EOF
#EOF
:wq

chmod 755 $OMNIHOME/gates/G_DB2/tranfer_static_tables_to_db2.sh

Test that the script works as expected from the command line, ensuring the user running the script has the correct 
permissions to access the DB2 database. Afterwards, configure the script to run periodically using UNIX cron, as the 
same user.

IBM Copyright 2019 32



Supports Guide to the JDBC Gateway

8.2 Command line access
The nco_sql command is used to login to the gateway process and run commands, including the TRANSFER command.

In order to authenticate the UNIX user that is used to login to the JDBC gateway the gateway process must be run 
as root or else have the appropriate PAM configuration.

For PAM configuration on linux:-

Create a PAM login file for the nco_g_jdbc biinary;
cd /etc/pam.d
cp login nco_g_jdbc

Set the gateway to use PAM in the property file; 
Gate.UsePamAuth: TRUE

The JDBC gateway process user and nco_sql login user must be the same;
e.g.
nco_sql -server G_JDBC -user netcool -password ********
1> get props;
2> go

Note : You should be using libngtktk version 3.2 or above

IBM Copyright 2019 33



Supports Guide to the JDBC Gateway

9 Common Issues

9.1 Status updates are not happening

There are no dedicated threads for alerts.status replication. The JDBC gateway uses a pool of threads to manage 
all the batches ready for forwarding to the database. The gateway works through all the replicated tables in 
sequence, therefore if there are many rows in alerts.journal or alerts.details, then these will be replicated before 
alerts.status is.

To resolve, check the gateways table replication file and comment out DETAILS replication, and examine the 
volume JOURNAL's being forwarded. 

e.g.
REPLICATE ALL FROM TABLE 'alerts.status'
USING MAP 'StatusMap';
REPLICATE ALL FROM TABLE 'alerts.journal'
USING MAP 'JournalMap';
# EOF 

Try increasing the batch and thread pool properties, whose default settings are:

Gate.Jdbc.Connections: 3 
Gate.RdrWtr.BufferSize: 25 
Gate.Jdbc.MaxBatchSize: 250

You can try increasing the settings, for example:

#Threads available for forwarding data to the database
Gate.Jdbc.Connections: 10 
#Buffer and batch settings
Gate.RdrWtr.BufferSize: 500 
Gate.Jdbc.MaxBatchSize: 1000

If this does not help try setting the number of connections to 1, to determine the throughput for a single thread, and 
to observe the databases behaviour:

Gate.Jdbc.Connections: 1 

Increase the number of Connections to accommodate the expected peak load.

Monitor the gateways STATS: log file entries and overall memory and CPU usage for a period to check that the 
system is coping with the gateways event load.

Notes : 
• The old historical gateways like the ODBC Gateway used 7 threads [Gate.Jdbc.Connections:7]. 
• With these increased settings, the JDBC's gateway memory allocation will be increased. 
• Use the Gate.Jdbc.ResyncFilter to manage the start-up synchronisation behaviour 

IBM Copyright 2019 34



Supports Guide to the JDBC Gateway

9.2 Replicating Custom tables

For a table called custom.alerts, and a table in the database called TARGET_ALERTS_TABLE , you can use the 
TRANSFER feature to synchronise the tables on start-up.

It is possible to add a filter to the TRANSFER command to minimise the volume of reinserts seen when the JDBC 
gateway is started, depending upon the available columns in the custom table.

Here is a generic example of how to perform a single custom table replication:

jdbc.startup.cmd:

TRANSFER FROM 'custom.alerts' TO 'TARGET_ALERTS_TABLE' USING TRANSFER_MAP 
CustomAlertsMap;

jdbc.map:

CREATE MAPPING CustomAlertsMap
(
'Identifier' = '@Identifier' ON INSERT ONLY,
'Serial' = '@Serial' ON INSERT ONLY,
'Node' = '@Node' ON INSERT ONLY,
'NodeAlias' = '@NodeAlias' ON INSERT ONLY NOTNULL '@Node',
'Manager' = '@Manager' ON INSERT ONLY,
'Agent' = '@Agent' ON INSERT ONLY,
'AlertGroup' = '@AlertGroup' ON INSERT ONLY,
'AlertKey' = '@AlertKey' ON INSERT ONLY,
'Summary' = '@Summary',
'Location' = '@Location' ON INSERT ONLY,
'Class' = '@Class' ON INSERT ONLY,
'Poll' = '@Poll' ON INSERT ONLY,
'Type' = '@Type' ON INSERT ONLY,
'Tally' = '@Tally',
'Severity' = '@Severity',
'OwnerUID' = '@OwnerUID',
'OwnerGID' = '@OwnerGID',
'Acknowledged' = '@Acknowledged',
'LastModified' = '@StateChange' CONVERT TO DATE,
'FirstOccurrence' = '@FirstOccurrence' ON INSERT ONLY CONVERT TO DATE,
'LastOccurrence' = '@LastOccurrence' CONVERT TO DATE,
'OriginalSeverity' = '@Severity' ON INSERT ONLY,
'ServerName' = '@ServerName' ON INSERT ONLY,
'ServerSerial' = '@ServerSerial' ON INSERT ONLY
);

jdbc.def:

REPLICATE ALL FROM TABLE 'alerts.status'
USING MAP 'StatusMap' ;

REPLICATE ALL FROM TABLE 'custom.alerts'
USING MAP 'CustomAlertsMap' INTO 'TARGET_ALERTS_TABLE'
SET UPDTOINS CHECK TO FORCED
;

IBM Copyright 2019 35



Supports Guide to the JDBC Gateway

9.3 Recommended SQLSTATE settings 
Development do not recommend any SQLSTATE settings other than the ones provided with the JDBC Gateway. 
This is because the Oracle DBA should recommend SQLSTATE settings based on the available SQLSTATE 
messages the Oracle database is likely to return, and how the JDBC gateway is required to handle them. 

The default setting are:

Gate.Jdbc.FatalErrors: '0A 42'
Gate.Jdbc.RetryErrors: '08 28 40 HYT'

The database vendor will have a list of SQLSTATEs and their meaning with respect to their database and should be
able to provide you with a list of SQLSTATE messages for your database: 

For example you are connecting to Oracle, you can contact Oracle Support for guidance or else the Oracle DBA.

Default Retry Errors:

08001 : SQL client unable to establish SQL connection
08002 : connection name in use
08003 : connection does not exist - SQL-02121
08004 : SQL server rejected SQL connection
08006 : connection failure
28000 : invalid authorization specification
40000 : transaction rollback - ORA-02091 .. 02092
40001 : serialization failure
40002 : integrity constraint violation
40003 : statement completion unknown

Default Fatal Errors:

0A000 : feature not supported - ORA-03000 .. 03099
0A001 : multiple server transactions
42000 : syntax error or access rule violation
ORA-00022
ORA-00251
ORA-00900 .. 00999
ORA-01031
ORA-01490 .. 01493
ORA-01700 .. 01799
ORA-01900 .. 02099
ORA-02140 .. 02289
ORA-02420 .. 02424
ORA-02450 .. 02499
ORA-03276 .. 03299
ORA-04040 .. 04059
ORA-04070 .. 04099

IBM Copyright 2019 36



Supports Guide to the JDBC Gateway

How to customise the Settings:

If the ORA-00370 message is seen in the logs and the JDBC Gateway needs to retry to send the batch file when 
this issue was encountered, you would review the SQLSTATE messages for the database system as follows:

60000 : system errors
ORA-00370 .. 00429
ORA-00600 .. 00899
ORA-06430 .. 06449
ORA-07200 .. 07999
ORA-09700 .. 09999

and decide if all the other errors required in the retry.

If the answer was yes, then you would add 60 to the list of prefixes, for example:

Gate.Jdbc.RetryErrors: '06 08 28 40 HYT'

9.4 Oracle RAC URL example
The JDBC drivers are documented by the vendor, and these will include examples of how to configure the database
URL's for high availability. Here is an example for the Oracle RAC URL:

The Oracle documentation states the JDBC URL syntax as:

Gate.Jdbc.Url: 'jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST = 
oraclehost1)(PORT = 1521))(ADDRESS = (PROTOCOL = TCP)(HOST = oraclehost2)(PORT = 
1521)) (LOAD_BALANCE = yes)(CONNECT_DATA = (SERVER = DEDICATED)(SERVICE_NAME = 
REPORTER)))'

With the usual single Oracle database syntax being:
Gate.Jdbc.Url: 'jdbc:oracle:thin:@oraclehost:1521:REPORTER'

For the Oracle RAC, the DB hosts are required as : oraclehost1, oraclehost2, etc.

Gate.Jdbc.Url: 'jdbc:oracle:thin:@oraclehost1,oraclehost2:1521:REPORTER'

In general it is best to ask the DBA of the system to provide the correct JDBC URL for the given driver.

IBM Copyright 2019 37



Supports Guide to the JDBC Gateway

9.5 Encrypting passwords and other properties
The JDBC Gateway supports AES encryption for encrypting passwords and other secret properties.

For example:

Generate the AES key for the JDBC Gateway:
$OMNIHOME/bin/nco_keygen -o $NCHOME/etc/security/keys/jdbc_gw.key

Obtain the encrypted string using the AES key:
$OMNIHOME/bin/nco_aes_crypt -c AES -k $NCHOME/etc/security/keys/jdbc_gw.key netcool
@44:etSQg2r6xBRjOj0g8cYvQM+VM5oaYPEQBJQkAnBeH3k=@

ConfigCryptoAlg : 'AES'
ConfigKeyFile : '$NCHOME/etc/security/keys/jdbc_gw.key'
Gate.Jdbc.Password: '@44:etSQg2r6xBRjOj0g8cYvQM+VM5oaYPEQBJQkAnBeH3k=@'

It is possible to use the same key for all the products in Netcool/OMNIbus, but it is usually easier for administration 
purposes, to use a unique key for each product. As this allows the key to be regenerated without affecting other 
products.

An example property file would look like this:

# AES Encryption properties
ConfigCryptoAlg : 'AES'
ConfigKeyFile : '$NCHOME/etc/security/keys/jdbc_gw.key'
# Database connection user/password
Gate.Jdbc.Username: 'reportdb'
Gate.Jdbc.Password: '@44:etSQg2r6xBRjOj0g8cYvQM+VM5oaYPEQBJQkAnBeH3k=@'
# ObjectServer Connection properties
Name: 'G_JDBC'
Gate.RdrWtr.Server: 'AGG_V'
Gate.RdrWtr.Username: 'jdbcgw'
Gate.RdrWtr.Password: '@44:etSQg2r6xBRjOj0g8cYvQM+VM5oaYPEQBJQkAnBeH3k=@'

Note: The nco_aes_crypt string is not the same, even for the same string.

9.6 Creating an Object Server Gateway User
The JDBC gateway user needs to be a member of the Gateway group. If command line access is required to check 
access to custom tables, then the ISQL group can be added as well. The UserID (e.g. 300) should be a free UserID 
within the administration or gateway user ranges.

create user 'jdbcgw' id 300 full name 'JDBC ORACLE Gateway' password 'netcool';
go
alter group 'Gateway' assign members  'jdbcgw';
go
alter group 'ISQL' assign members  'jdbcgw';
go

IBM Copyright 2019 38

mailto:'@44
mailto:'@44


Supports Guide to the JDBC Gateway

9.7 Setting the Gateways Java path

The Gateways Java is picked up from the environmentfile.

You can find the file using UNIX find.
e.g.
find $NCHOME -name nco_g_jdbc.env

You can then edit the file and add the NCO_GATEWAY_JRE and echo messages to check the new Java path is 
used, as shown below:

# Top of file
NCO_GATEWAY_JRE=/opt/ibm-java-x86_64-80
export NCO_GATEWAY_JRE
echo "*** NCO_GATEWAY_JRE = $NCO_GATEWAY_JRE"

…
echo "*** NCO_GATEWAY_JRE = $NCO_GATEWAY_JRE"
echo "*** JRE_DIR = $JRE_DIR"
#EOF

IBM Copyright 2019 39



Supports Guide to the JDBC Gateway

9.8 DB2 tracing batches

To trace problems with batches, you need to reduce the flow of data to more easily handled event flow.

• Reduce the replicated tables to 1
• Reduce the connections to 1
• Enabled JDBC Driver tracing

File : jdbc.rdrwtr.tblrep.def

REPLICATE ALL FROM TABLE 'alerts.status'
USING MAP 'StatusMap' ;

# Commented out for tracing batch issue
#  REPLICATE ALL FROM TABLE 'alerts.journal'
#  USING MAP 'JournalMap';

File : G_JDBC.props
   
# Recommended settings
Ipc.Timeout: 600
Gate.Jdbc.ResyncMode: 'UNI'
# Debugging settings
Gate.Jdbc.MaxBatchSize: 1
Gate.Jdbc.Connections: 1

# Debugging
MessageLevel: 'debug'
MaxLogFileSize: 10240
Gate.G_JDBC.Debug: TRUE
Gate.Java.Debug: TRUE
Gate.Mapper.Debug: TRUE
Gate.NGtkDebug: TRUE
Gate.RdrWtr.Debug: TRUE
Gate.RdrWtr.LogOSSql: TRUE
#EOF

Add the DB2JccConfiguration.properties files directory path to the CLASSPATH.

setenv CLASSPATH 
/opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java/DB2/db2jcc.jar:/opt/nrv81/IBM/tivoli
/netcool/omnibus/gates/java

Directory: /opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java
File : DB2JccConfiguration.properties 

db2.jcc.override.traceDirectory=/opt/nrv81/IBM/tivoli/netcool/omnibus/tmp
db2.jcc.override.traceFile=jcctrc
db2.jcc.override.traceFileAppend=true
db2.jcc.override.TraceLevel=TRACE_ALL
#EOF

Create trace file directory:
mkdir /opt/nrv81/IBM/tivoli/netcool/omnibus/tmp

IBM Copyright 2019 40



Supports Guide to the JDBC Gateway

To revert after troubleshooting:

cd /opt/nrv81/IBM/tivoli/netcool/omnibus/gates/java
mv DB2JccConfiguration.properties DB2JccConfiguration.properties.not-used

Revert the gateways property file, for example:

# Debugging settings
Gate.Jdbc.MaxBatchSize: 250
Gate.Jdbc.Connections: 12
# Debugging
MessageLevel: 'info'
MaxLogFileSize: 10240
Gate.G_JDBC.Debug: FALSE
Gate.Java.Debug: FALSE
Gate.Mapper.Debug: FALSE
Gate.NGtkDebug: FALSE
Gate.RdrWtr.Debug: FALSE
Gate.RdrWtr.LogOSSql: FALSE
#EOF

File : jdbc.rdrwtr.tblrep.def

REPLICATE ALL FROM TABLE 'alerts.status'
USING MAP 'StatusMap' ;

REPLICATE ALL FROM TABLE 'alerts.journal'
USING MAP 'JournalMap';
#EOF

IBM Copyright 2019 41


	1 Introduction
	1.1 Overview

	2 Database Considerations
	2.1 Example Database drivers and URLs
	2.1.1 DB2
	2.1.2 Oracle
	2.1.3 Sybase

	2.2 Database Schemas

	3 JDBC Gateway Configuration
	3.1 G_JDBC.props
	3.2 jdbc.map
	3.3 jdbc.rdrwtr.tblrep.def
	3.4 jdbc.startup.cmd
	3.5 Gate.Jdbc.Mode
	3.5.1 AUDIT Mode
	3.5.2 REPORTING Mode


	4 Monitoring Performance
	5 Property Considerations
	5.1 Gate.RdrWtr.Description
	5.2 Java Memory
	5.3 Object Server Ipc.StackSize
	5.4 Object Server failover and failback
	5.5 Java CLASSPATH : Gate.Java.ClassPath
	5.6 Data Forwarding
	5.6.1 The jdbc.rdrwtr.tblrep.def file
	5.6.2 Journal considerations

	5.7 Debug logging
	5.8 Dumpprops

	6 Example Installations
	6.1 Linux Red Hat : REPORTING
	6.1.1 Configuration
	6.1.2 Properties file
	6.1.3 Map file
	6.1.4 Table replication file
	6.1.5 Start-up file

	6.2 Solaris : AUDIT
	6.2.1 Configuration
	6.2.2 Properties file
	6.2.3 Map file
	6.2.4 Table replication file


	7 Event Data Flow
	7.1 Audit Database Configuration
	7.2 Resident Database Configuration
	7.2.1 Standard Triggers Method
	7.2.2 Temporal Trigger Method


	8 Static Table Updates
	8.1 DB2 Update Script Example
	8.2 Command line access

	9 Common Issues
	9.1 Status updates are not happening
	9.2 Replicating Custom tables
	9.3 Recommended SQLSTATE settings
	9.4 Oracle RAC URL example
	9.5 Encrypting passwords and other properties
	9.6 Creating an Object Server Gateway User
	9.7 Setting the Gateways Java path
	9.8 DB2 tracing batches


